Percobaan 7
Led RGB, Buzzer, Soil Moisture, & Push Button
1. Rangkai rangkaian sesuai dengan rangkaian percobaan 7 pada modul 2.
2. Setelah semua komponen (Buzzer, LED RGB, Push Button, dan Sensor Soil moisture ) dihubungkan dengan STM32, lalu hubungkan USB STM32 ke laptop.
2. Setelah semua komponen (Buzzer, LED RGB, Push Button, dan Sensor Soil moisture ) dihubungkan dengan STM32, lalu hubungkan USB STM32 ke laptop.
3. Inisaialisasi program menggunakan STM32CubeIDE
4. Setelah program selesai, simulasikan rangkaian.
4. Setelah program selesai, simulasikan rangkaian.
5. Selesai.
2. Hardware dan Diagram Blok[Kembali]
Hardware :
- STM32
- Push button
- LED RGB
3. Rangkaian Simulasi[Kembali]
Rangkailah seperti rangkaian percobaan 7 pada modul 2
Kondisi tidak sesuai karena stlink rusak
- Prinsip Kerja
Prinsip kerja dari rangkaian dan program di atas adalah untuk memantau kelembaban tanah menggunakan sensor soil moisture dan memberikan indikasi visual serta suara berdasarkan tingkat kelembaban yang terdeteksi. Sensor soil moisture terhubung ke ADC (Analog-to-Digital Converter) dari mikrokontroler STM32F103C8 (Blue Pill), yang akan membaca nilai tegangan sebagai representasi kadar air dalam tanah. Mikrokontroler kemudian membandingkan nilai ADC dengan dua ambang batas yang telah ditentukan:
ADC_THRESH_HIGH (3000) dan ADC_THRESH_MID (1500). Berdasarkan nilai ini, LED RGB akan menyala dengan warna tertentu: hijau untuk kelembaban tinggi (cukup air), biru untuk kelembaban sedang, dan merah untuk kelembaban rendah (kekeringan). Jika kelembaban sangat rendah dan tombol ditekan, maka buzzer akan menyala dengan pola suara yang dapat berubah setiap kali tombol ditekan kembali, memberikan sinyal peringatan dalam bentuk suara. PWM (Pulse Width Modulation) digunakan untuk mengatur pola suara pada buzzer. Keseluruhan sistem bekerja secara terus-menerus dengan membaca nilai kelembaban secara berkala dan merespon perubahan melalui LED dan buzzer sesuai kondisi yang terdeteksi.4. Flowchart dan Listing Program[Kembali]
- Flowchart
- Listing Program
#include "stm32f1xx_hal.h"
/* Global Variables */
ADC_HandleTypeDef hadc1;
TIM_HandleTypeDef htim2;
uint8_t sound_pattern = 0;
/* Pin Definitions */
#define LED_RED_PIN GPIO_PIN_12
#define LED_GREEN_PIN GPIO_PIN_13
#define LED_BLUE_PIN GPIO_PIN_14
#define LED_PORT GPIOB
#define BUTTON_PIN GPIO_PIN_0
#define BUTTON_PORT GPIOB
#define BUZZER_PIN GPIO_PIN_2 // TIM2_CH3 (PA2)
/* Threshold Values */
#define ADC_THRESH_HIGH 3000
#define ADC_THRESH_MID 1500
/* Frekuensi Buzzer - using uint32_t instead of uint16_t */
const uint32_t pwm_periods[] = {1000, 50000, 719999}; // 72MHz/freq - 1
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM2_Init(void);
void update_leds_and_buzzer(uint32_t adc_val, uint8_t btn_state); // Updated function signature
void change_sound_pattern(void);
void Error_Handler(void); // Explicit declaration
int main(void) {
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_ADC1_Init();
MX_TIM2_Init();
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_3);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);
HAL_ADC_Start(&hadc1);
while (1) {
static uint32_t last_adc_tick = 0;
static uint32_t last_sound_change = 0;
uint8_t button_state = HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN);
if (HAL_GetTick() - last_adc_tick > 200) {
last_adc_tick = HAL_GetTick();
HAL_ADC_Start(&hadc1);
if (HAL_ADC_PollForConversion(&hadc1, 10) == HAL_OK) {
update_leds_and_buzzer(HAL_ADC_GetValue(&hadc1), button_state);
}
}
if (button_state == GPIO_PIN_RESET && (HAL_ADC_GetValue(&hadc1) < ADC_THRESH_MID)) {
if (HAL_GetTick() - last_sound_change > 1000) {
last_sound_change = HAL_GetTick();
change_sound_pattern();
}
}
HAL_Delay(10);
}
}
void update_leds_and_buzzer(uint32_t adc_val, uint8_t btn_state) {
HAL_GPIO_WritePin(LED_PORT, LED_RED_PIN|LED_GREEN_PIN|LED_BLUE_PIN, GPIO_PIN_RESET);
if (adc_val >= ADC_THRESH_HIGH) {
HAL_GPIO_WritePin(LED_PORT, LED_GREEN_PIN, GPIO_PIN_SET);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);
}
else if (adc_val >= ADC_THRESH_MID) {
HAL_GPIO_WritePin(LED_PORT, LED_BLUE_PIN, GPIO_PIN_SET);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);
}
else {
HAL_GPIO_WritePin(LED_PORT, LED_RED_PIN, GPIO_PIN_SET);
if (btn_state == GPIO_PIN_RESET) {
__HAL_TIM_SET_AUTORELOAD(&htim2, pwm_periods[sound_pattern]);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, pwm_periods[sound_pattern]/2);
} else {
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);
}
}
}
void change_sound_pattern(void) {
sound_pattern = (sound_pattern + 1) % 3;
if (HAL_ADC_GetValue(&hadc1) < ADC_THRESH_MID &&
HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN) == GPIO_PIN_SET) {
__HAL_TIM_SET_AUTORELOAD(&htim2, pwm_periods[sound_pattern]);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, pwm_periods[sound_pattern]/2);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
HAL_TIM_MspPostInit(&htim2);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
/* GPIO Initialization */
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/* LED Outputs */
GPIO_InitStruct.Pin = LED_RED_PIN|LED_GREEN_PIN|LED_BLUE_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct);
/* Button Input */
GPIO_InitStruct.Pin = BUTTON_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(BUTTON_PORT, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
Tidak ada analisa dan juga Kondisi tidak sesuai karena stlink rusak
HTML [Download]
Listing Program [Download]
Datasheet Mikrokontroler STM32F103C8 [Download]
Datasheet Sensor Soil Moisture [Download]
Datasheet Push Button [Download]
Datasheet RGB LED [Download]
Datasheet Buzzer [Download]



.jpg)








Tidak ada komentar:
Posting Komentar